Search results for "image time series"
showing 7 items of 7 documents
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Gridding artifacts on medium-resolution satellite image time series: MERIS case study
2011
Earth observation satellites provide a valuable source of data which when conveniently processed can be used to better understand the Earth system dynamics. In this regard, one of the prerequisites for the analysis of satellite image time series is that the images are spatially coregistered so that the resulting multitemporal pixel entities offer a true temporal view of the area under study. This implies that all the observations must be mapped to a common system of grid cells. This process is known as gridding and, in practice, two common grids can be used as a reference: 1) a grid defined by some kind of external data set (e.g., an existing land-cover map) or 2) a grid defined by one of t…
Comparative study of three satellite image time-series decomposition methods for vegetation change detection
2018
International audience; Satellite image time-series (SITS) methods have contributed notably to detection of global change over the last decades, for instance by tracking vegetation changes. Compared with multi-temporal change detection methods, temporally highly resolved SITS methods provide more information in a single analysis, for instance on the type and consistency of change. In particular, SITS decomposition methods show a great potential in extracting various components from non-stationary time series, which allows for an improved interpretation of the temporal variability. Even though many case studies have applied SITS decomposition methods, a systematic comparison of common algori…
Nonlinear Time-Series Adaptation for Land Cover Classification
2017
Automatic land cover classification from satellite image time series is of paramount relevance to assess vegetation and crop status, with important implications in agriculture, biofuels, and food. However, due to the high cost and human resources needed to characterize and classify land cover through field campaigns, a recurrent limiting factor is the lack of available labeled data. On top of this, the biophysical–geophysical variables exhibit particular temporal structures that need to be exploited. Land cover classification based on image time series is very complex because of the data manifold distortions through time. We propose the use of the kernel manifold alignment (KEMA) method for…
Cloud masking and removal in remote sensing image time series
2017
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clo…
Exploiting deep learning algorithms and satellite image time series for deforestation prediction
2022
In recent years, we have witnessed the emergence of Deep Learning (DL) methods, which have led to enormous progress in various fields such as automotive driving, computer vision, medicine, finances, and remote sensing data analysis. The success of these machine learning methods is due to the ever-increasing availability of large amounts of information and the computational power of computers. In the field of remote sensing, we now have considerable volumes of satellite images thanks to the large number of Earth Observation (EO) satellites orbiting the planet. With the revisit time of satellites over an area becoming shorter and shorter, it will probably soon be possible to obtain daily imag…
Multitemporal Cloud Masking in the Google Earth Engine
2018
The exploitation of Earth observation satellite images acquired by optical instruments requires an automatic and accurate cloud detection. Multitemporal approaches to cloud detection are usually more powerful than their single scene counterparts since the presence of clouds varies greatly from one acquisition to another whereas surface can be assumed stationary in a broad sense. However, two practical limitations usually hamper their operational use: the access to the complete satellite image archive and the required computational power. This work presents a cloud detection and removal methodology implemented in the Google Earth Engine (GEE) cloud computing platform in order to meet these r…